Temperature Dependent Charge Carrier Dynamics in Formamidinium Lead Iodide Perovskite
نویسندگان
چکیده
The fundamental opto-electronic properties of organic-inorganic hybrid perovskites are strongly affected by their structural parameters. These parameters are particularly critical in formamidinium lead iodide (FAPbI3), in which its large structural disorder leads to a non-perovskite yellow phase that hinders its photovoltaic performance. A clear understanding of how the structural parameters affect the opto-electronic properties is currently lacking. We have studied the opto-electronic properties of FAPbI3 using microwave conductivity measurements. We find that the mobility of FAPbI3 increases at low temperature following a phonon scattering behavior. Unlike methylammonium lead iodide (MAPbI3), there are no abrupt changes after the low-temperature β/γ phase transition and the lifetime is remarkably long. This absence of abrupt changes can be understood in terms of the reduced rotational freedom and smaller dipole moment of the formamidinium, as compared to methylammonium.
منابع مشابه
Direct Laser Writing of δ- to α-Phase Transformation in Formamidinium Lead Iodide
Organolead halide perovskites are increasingly considered for applications well beyond photovoltaics, for example, as the active regions within photonic devices. Herein, we report the direct laser writing (DLW: 458 nm cw-laser) of the formamidinium lead iodide (FAPbI3) yellow δ-phase into its high-temperature luminescent black α-phase, a remarkably easy and scalable approach that takes advantag...
متن کاملGuanidinium-Formamidinium Lead Iodide: A Layered Perovskite-Related Compound with Red Luminescence at Room Temperature
Two-dimensional hybrid organic-inorganic lead halides perovskite-type compounds have attracted immense scientific interest due to their remarkable optoelectronic properties and tailorable crystal structures. In this work, we present a new layered hybrid lead halide, namely [CH(NH2)2][C(NH2)3]PbI4, wherein puckered lead-iodide layers are separated by two small and stable organic cations: formami...
متن کاملStable α/δ phase junction of formamidinium lead iodide perovskites for enhanced near-infrared emission† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c6sc03542f Click here for additional data file.
Although formamidinium lead iodide (FAPbI3) perovskite has shown great promise in the field of perovskitebased optoelectronic devices, it suffers the complications of a structural phase transition from a black perovskite phase (a-FAPbI3) to a yellow non-perovskite phase (d-FAPbI3). Generally, it is pivotal to avoid d-FAPbI3 since only a-FAPbI3 is desirable for photoelectric conversion and near-...
متن کاملCubic Perovskite Structure of Black Formamidinium Lead Iodide, α-[HC(NH2)2]PbI3, at 298 K
The structure of black formamidinium lead halide, α-[HC(NH2)2]PbI3, at 298 K has been refined from high resolution neutron powder diffraction data and found to adopt a cubic perovskite unit cell, a = 6.3620(8) Å. The trigonal planar [HC(NH2)2] + cations lie in the central mirror plane of the unit cell with the formamidinium cations disordered over 12 possible sites arranged so that the C−H bond...
متن کاملStability Issues on Perovskite Solar Cells
Organo lead halide perovskite materials like methylammonium lead iodide (CH3NH3PbI3) and formamidinium lead iodide (HC(NH2)2PbI3) show superb opto-electronic properties. Based on these perovskite light absorbers, power conversion efficiencies of the perovskite solar cells employing hole transporting layers have increased from 9.7% to 20.1% within just three years. Thus, it is apparent that pero...
متن کامل